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Abstract— The Traveling Salesman Problem (TSP) is a classical 
optimization challenge that seeks to determine the shortest route 
visiting each city exactly once before returning to the starting point. 
Due to its NP-hard complexity, approximation methods are 
necessary for solving the TSP when the number of cities is 
substantial. This paper examines the implementation of the Nearest 
Neighbor algorithm alongside the 2-Opt optimization technique to 
find an approximate solution for the shortest route covering all 
countries in the Americas. Testing results indicate that the 
combination of Nearest Neighbor and 2-Opt yields more optimal 
solutions than employing the Nearest Neighbor algorithm alone. 
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I.   INTRODUCTION 

 The American continent is home to numerous beautiful 
countries that attract a significant number of tourists. Renowned 
for its rich history, diverse cultures, impressive architecture, and 
stunning natural landscapes, America offers a wide array of 
destinations. From modern cities such as New York, Los 
Angeles, and Toronto to natural wonders like the Rocky 
Mountains and the Grand Canyon, the continent presents a 
plethora of appealing sites for travelers from around the globe. 

 

 
Figure 1. Map of the Americas 

Source: https://id.wikipedia.org/wiki/Daftar_bursa_efek_ 

di_Benua_Amerika  
Geographically, America is a relatively large continent 

characterized by varying population densities, comprising 
approximately 35 countries distributed across its expanse. Each 
country possesses unique characteristics and distinct attractions, 
making inter-country travel within America an exceptionally 
engaging experience. The available transportation systems, 
including domestic and international flight networks as well as 
intercity bus services, facilitate ease of movement for tourists 
exploring this vast continent.  

Traveling across America can be quite costly, particularly for 
those wishing to visit all the countries in one journey, which can 
lead to significant expenses. Therefore, it is essential to identify 
routes that minimize costs. It is assumed that shorter travel 
distances will generally result in lower expenses, as airlines 
often set prices based on distance.  

This paper will explore the shortest travel route for a tour 
across the American continent, visiting all 35 countries, utilizing 
one of the approximation techniques for the traveling salesman 
problem (TSP). Given the complexity of finding the shortest 
tour, employing an exact match TSP algorithm is impractical. 
The best-known exact match algorithm for solving TSP, Held-
Karp, operates with exponential time complexity, making it 
infeasible to solve TSP instances with more than 34 cities within 
a reasonable timeframe. 
 

II.  THEORITICAL FRAMEWORK 

A. Traveling Salesman Problem (TSP) 
The Traveling Salesman Problem (TSP) is defined as follows: 

"Given a list of cities and the distances between each pair of 
cities, find the shortest route that visits each city exactly once 
and returns to the origin city." This problem is a classic example 
in the fields of combinatorial optimization and graph theory, and 
it holds significant relevance in various applications such as 
travel planning and circuit design. 
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Figure 2. Complete Graph 

Source: https://i.sstatic.net/VP1OS.png  
For instance, the TSP can be illustrated using the graph above, 

where the shortest route is determined to be 16, traversing the 
nodes in the order of start → 8p → 5p → 2p → 4p → start. TSP 
is classified as an NP-hard problem, which currently lacks a 
polynomial-time algorithm for its resolution. Consequently, 
exact solutions for TSP become impractical in scenarios 
involving a large number of cities due to the exceedingly high 
computational time required. For example, solving TSP exactly 
for 50 cities using the Held-Karp algorithm, which has a time 
complexity of 𝑂(𝑛ଶ2), would take approximately 3255334.81 
days or 8918.7255 years, This calculation is based on the 
following formula: 

2ହ ∗ 50ଶ ∗
0.1

(3,156𝑒 + 7) ∗ 1000
=  8918.7255 

Assuming: 
- Each computation takes 0.1 ms 
- One year is equal to 3.156 ×  10 seconds 

Algorithms designed to tackle TSP can be categorized into 
two types: exact algorithms and approximation algorithms. 
Exact algorithms yield results that are guaranteed to be minimal 
and accurate; examples include branch and bound, dynamic 
programming (Held-Karp), and brute force methods. In contrast, 
approximation algorithms provide results that are not precise but 
offer reasonable approximations, with the advantage of 
significantly reduced computational time compared to exact 
algorithms. Examples of approximation algorithms include the 
Nearest Neighbor and Minimum Spanning Tree methods. In this 
paper, the author will employ the Minimum Spanning Tree 
approach to address the TSP. 

 
B. Greedy Algorithm 

The greedy algorithm is a widely utilized approach for 
addressing various optimization problems, wherein decisions 
are made locally with the expectation that these choices will lead 
to a globally optimal solution. This methodology proves 
particularly effective in scenarios where a problem can be 
decomposed into a series of smaller decisions, and each decision 
can be made independently without requiring knowledge of 
future choices. A prominent example of the application of the 
greedy algorithm is found in the Traveling Salesman Problem 
(TSP). In this problem, a salesman is tasked with visiting a set 
number of cities and returning to the starting point while 
minimizing the total distance traveled. The Nearest Neighbour 
algorithm represents one of the greedy methods employed to 
tackle this issue. In this algorithm, the salesman consistently 
selects the nearest unvisited city as the next destination, 
disregarding potentially more advantageous routes that may 

become available later. The key components of the greedy 
algorithm include:  

a) Candidate Set (C)  
This refers to the collection of all potential candidates that can 

be selected at each step. In the context of TSP, the candidate set 
may consist of nodes (cities) within a graph that represents the 
travel routes. In other problems, candidates could include tasks 
to be completed, jobs to be performed, coins to be selected, 
objects to be picked, or characters to be chosen in a game.  

b) Solution Set (S)  
This set contains the candidates that have been selected and 

are part of the solution being constructed. In the case of TSP, the 
solution set will include the sequence of cities visited by the 
salesman.  

c) Solution Function  
This function is employed to ascertain whether the selected 

candidate set yields the desired solution. In TSP, this function 
will verify if all cities have been visited and whether the 
resulting route meets the criteria for the shortest distance.  

d) Selection Function  
This function is responsible for choosing candidates based on 

specific criteria. 
 

C. Hamiltonian Path and Circuit 
A Hamiltonian path is a path in a graph that visits each vertex 

exactly once without returning to the starting vertex. When this 
path returns to the starting vertex, it is referred to as a 
Hamiltonian circuit. In the context of the Traveling Salesman 
Problem (TSP), the optimal solution is identified as the 
Hamiltonian circuit with the minimum total weight. 

 
D. Haversine Formula 

The Haversine formula is used to calculate the great-circle 
distance between two points on a sphere given their latitudes and 
longitudes. It is particularly useful for computing distances 
between cities on Earth. The formula is:  

𝑑 =  2𝑅 ∗ arcsin ( √ [ 𝑠𝑖𝑛ଶ ቀ
𝜑ଶ − 𝜑₁

2
ቁ + 

𝑐𝑜𝑠(𝜑₁) ∗ 𝑐𝑜𝑠(𝜑₂) ∗ 𝑠𝑖𝑛ଶ ൬
𝜆ଶ − 𝜆ଵ

2
൰ ) ]  

Where: 
- d is the distance between the two points along the 

sphere's surface 
- R is the radius of the sphere (for Earth, approximately 

6,371 kilometers) 
- 𝜑₁, 𝜑₂ are the latitudes of point 1 and point 2 in radians 
- 𝜆₁, 𝜆₂ are the longitudes of point 1 and point 2 in 

radians  
This formula accounts for the Earth's spherical shape and 

provides more accurate distance calculations compared to the 
Euclidean distance when measuring large distances across the 
Earth's surface. 

 
E. The 2-Opt Algorithm 

The 2-Opt algorithm is a widely recognized method employed 
to enhance solutions for the Traveling Salesman Problem (TSP). 
This algorithm operates by refining an existing route through a 
series of straightforward exchanges known as 2-Opt swaps. The 
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fundamental principle behind this algorithm is to eliminate any 
crossings present in the TSP route, thereby resulting in a more 
efficient and shorter path. 

 

  
Figure 3. Algoritma 2-Opt Process 

Source: 
https://www.researchgate.net/publication/281412705/figure/fig

3/AS:668978481475599@1536508307852/Local-search-2-
opt-and-Or-opt.png  

 
As illustrated in the accompanying figure, the image depicts 

a route before and after the application of the 2-Opt algorithm. 
Initially, the route is represented as A-B-E-C-D-A, which 
contains a crossing. By reversing the sub-route E-C to C-E, a 
new, more optimal route is generated: A-B-C-E-D-A. The 
operational procedure of the 2-Opt algorithm can be 
summarized as follows:  

1. Consider a route R and nodes v1 and v2, where the 
nodes between 𝑣ଵ and 𝑣ଶ  are to be reversed.  

2. Extract the segment of the route from the start to 𝑣ଵ and 
append it to the new route in the same order.  

3. Extract the segment from 𝑣ଵାଵ  to 𝑣ଶାଵ and append it 
to the new route in reverse order. 

4. Finally, extract the segment from 𝑣ଶାଵ back to the start 
and append it to the new route in the same order. 

 
F. Nearest Neighbor Algorithm 

The Nearest Neighbor algorithm is one of the straightforward 
heuristics employed to address the Traveling Salesman Problem 
(TSP). This method utilizes a greedy approach, whereby at each 
step, the next destination selected is the nearest unvisited city. 
The steps of this algorithm are as follows:   

1. Begin at a designated starting city.   
2. Identify the closest unvisited city.   
3. Move to that city.   
4. Repeat steps 2 and 3 until all cities have been visited.   
5. Return to the initial city.   
 

III.   METHOD 

The author, as previously indicated in the introduction, seeks 
to establish an estimation of the most efficient complete tour 
route encompassing all nations within the Americas, using the 
capitals of these nations as key reference points. The Americas 
are categorized into distinct regions: North America, the 
Caribbean, South America, and Central America. In this 
framework, the author has assembled a comprehensive list of 
each country paired with its capital within the respective regions 
of Europe, a portion of which is presented below. 

 
countries = { 
    'North America': [ 
        "Washington DC United States", 
        "Ottawa Canada", 

        "Mexico City Mexico", 
        "Guatemala City Guatemala", 
        "San Salvador El Salvador", 
        "Tegucigalpa Honduras", 
        "Managua Nicaragua", 
        "San Jose Costa Rica", 
        "Panama City Panama" 
    ], 
    'Caribbean': [ 
        "Havana Cuba", 
        "Santo Domingo Dominican Republic", 
        "Port-au-Prince Haiti", 
        "Kingston Jamaica", 
        "Nassau Bahamas", 
        "San Juan Puerto Rico", 
        "Port of Spain Trinidad and Tobago", 
        "Bridgetown Barbados" 
    ], 
    'South America': [ 
        "Brasilia Brazil", 

   ... 
   ... 

Subsequently, the author utilized the Geopy library available 
in Python to obtain the coordinates of latitude and longitude. 
The acquired latitude and longitude coordinates were then stored 
in JSON format. 
{ 
    "North America": { 
        "Washington DC United States": { 
            "latitude": 38.8950368, 
            "longitude": -77.0365427 
        }, 
        "Ottawa Canada": { 
            "latitude": 45.4208777, 
            "longitude": -75.6901106 
        }, 
        "Mexico City Mexico": { 
            "latitude": 19.4326296, 
            "longitude": -99.1331785 
        }, 
        "Guatemala City Guatemala": { 
            "latitude": 14.6416142, 
            "longitude": -90.5132836 
        }, 
        "San Salvador El Salvador": { 
            "latitude": 13.6989939, 
            "longitude": -89.1914249 
        }, 

   ... 
   ... 

Upon obtaining the coordinates of each national capital, the 
author calculated the geographical distances between one 
country and all others using the Haversine formula, which is 
employed to determine the distance between two points on a 
sphere (in this case, the Earth). The distances between each pair 
of countries were recorded in a weighted adjacency matrix. This 
weighted adjacency matrix serves as the complete graph 
representation for the 35 countries in question. From this 
complete graph, the shortest tour was identified using the 
Nearest Neighbour algorithm, as outlined in the following 
pseudocode: 

 
procedure NearestNeighbor; 
var 
  path: array [0..n-1] of integer; 
  unvisited: array [1..n-1] of integer; 
  current: integer; 
  nearest: integer; 
  i: integer; 
 
begin 
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  path[0] := 0; // Start from city 0 
  for i := 1 to n-1 do 
    unvisited[i] := i; 
 
  current := 0; 
  while unvisited != [] do 
  begin 
    // Find nearest unvisited city 
    nearest := unvisited[1]; 
    for i := 2 to n-1 do 
      if adj_matrix[current, unvisited[i]] < 
adj_matrix[current, nearest] then 
        nearest := unvisited[i]; 
 
    path[length(path)] := nearest; 
    delete(unvisited, nearest); 
    current := nearest; 
  end; 
 
  path[length(path)] := 0; // Complete the cycle 
  Result := path; 
end; 

 
The Nearest Neighbour algorithm utilizes lists to store the 

nodes that have been visited. In its implementation, this 
algorithm employs two primary lists: one for maintaining the 
current route being formed (path) and another for keeping track 
of the nodes that have yet to be visited (unvisited). Each time the 
algorithm selects the nearest node, that node is removed from 
the unvisited list and added to the path list. This process ensures 
that each node is visited only once, facilitating the tracking of 
which nodes remain available for selection. 

In the context of finding an optimal route across the continent 
of America, the algorithm initiates from Washington DC as the 
starting city and subsequently selects the nearest unvisited 
capital based on distances calculated using the Haversine 
formula. Although this greedy approach does not always yield 
the optimal solution, it is effective in providing reasonable 
solutions with better time complexity compared to exact 
algorithms. This is evidenced by implementation results that can 
resolve the problem for 35 countries in America in under 1 
milliseconds. The selection of the nearest node at each iteration 
also aids in minimizing the likelihood of routes deviating 
significantly from the optimal solution, although there remains 
a possibility of route crossings, which can subsequently be 
optimized using the 2-Opt algorithm. 

 
TSP Using NN 
 
Washington DC United States -> Ottawa Canada -> 
Nassau Bahamas -> Havana Cuba -> Kingston Jamaica -> 
Port-au-Prince Haiti -> Santo Domingo Dominican 
Republic -> San Juan Puerto Rico -> Basseterre Saint 
Kitts and Nevis -> St. John's Antigua and Barbuda -> 
Roseau Dominica -> Castries Saint Lucia -> Kingstown 
Saint Vincent and the Grenadines -> St. George's 
Grenada -> Port of Spain Trinidad and Tobago -> 
Bridgetown Barbados -> Georgetown Guyana -> 
Paramaribo Suriname -> Caracas Venezuela -> Bogota 
Colombia -> Quito Ecuador -> Panama City Panama -> 
Panama City Panama -> San Jose Costa Rica -> San Jose 
Costa Rica -> Managua Nicaragua -> Managua Nicaragua 
-> Tegucigalpa Honduras -> Tegucigalpa Honduras -> 
San Salvador El Salvador -> San Salvador El Salvador 
-> Guatemala City Guatemala -> Belmopan Belize -> 
Mexico City Mexico -> Lima Peru -> La Paz Bolivia -> 
Asuncion Paraguay -> Buenos Aires Argentina -> 
Montevideo Uruguay -> Santiago Chile -> Brasilia 
Brazil -> Washington DC United States 

 
Total distance traveled: 33774.61743080288 
Time taken to execute: 0.2088000183 ms 

 
 

 
Figure 4. TSP Tour with Nearest Neighbour 

Source: Author's Document 
 
The approximation route for the Traveling Salesman Problem 

(TSP) indicates a total distance of 33.774.6 kilometers required 
to visit all 35 countries in the Americas and return to the starting 
point. However, it is evident that this route contains several 
suboptimal paths and intersections, such as the segment 
connecting the USA to Brazil and the one from Canada to the 
Bahamas, among others. There remains potential for further 
optimization of this route to eliminate all crossings by 
employing the 2-Opt crossover algorithm. The pseudocode for 
generating a new route using the 2-Opt algorithm is as follows: 

 
function TwoOptSwap(tour: array of integer; i, j: 
integer): array of integer; 
var 
  new_tour: array of integer; 
 
begin 
  new_tour := Copy(tour, 1, i-1) +  
              Reverse(Copy(tour, i, j-i+1)) +  
              Copy(tour, j+1, Length(tour)-j); 
  Result := new_tour; 
end;  

 
function ImproveTour2Opt(tour: array of integer; 
tour_cost: integer): array of integer; 
var 
  best_tour: array of integer; 
  best_cost: integer; 
  improved: boolean; 
  i, j: integer; 
  new_tour: array of integer; 
  new_cost: integer; 
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begin 
  best_tour := tour; 
  best_cost := tour_cost; 
  improved := False; 
 
  while True do 
  begin 
    for i := 1 to Length(tour)-3 do 
    begin 
      for j := i+2 to Length(tour) do 
      begin 
        new_tour := TwoOptSwap(tour, i, j); 
        new_cost := CalculateTspCost(new_tour); 
 
        if new_cost < best_cost then 
        begin 
          best_tour := new_tour; 
          best_cost := new_cost; 
          improved := True; 
          Break; 
        end; 
      end; 
 
      if improved then 
        Break; 
    end; 
 
    if not improved then 
      Break; 
 
    tour := best_tour; 
    tour_cost := best_cost; 
  end; 
 
  Result := best_tour; 
end; 

 
   After changing the tour with Nearest Neighbor by adding the 
2-Opt algorithm, the tour results are as follows: 
 
TSP Using NN and 2-Opt 
 
Washington DC United States -> Nassau Bahamas -> 
Havana Cuba -> Kingston Jamaica -> Port-au-Prince 
Haiti -> Santo Domingo Dominican Republic -> San Juan 
Puerto Rico -> Basseterre Saint Kitts and Nevis -> 
St. John's Antigua and Barbuda -> Roseau Dominica -> 
Castries Saint Lucia -> Bridgetown Barbados -> 
Kingstown Saint Vincent and the Grenadines -> St. 
George's Grenada -> Caracas Venezuela -> Bogota 
Colombia -> Port of Spain Trinidad and Tobago -> 
Georgetown Guyana -> Paramaribo Suriname -> Brasilia 
Brazil -> Asuncion Paraguay -> Montevideo Uruguay -> 
Buenos Aires Argentina -> Santiago Chile -> La Paz 
Bolivia -> Lima Peru -> Quito Ecuador -> Panama City 
Panama -> Panama City Panama -> San Jose Costa Rica -
> San Jose Costa Rica -> Managua Nicaragua -> Managua 
Nicaragua -> Tegucigalpa Honduras -> Tegucigalpa 
Honduras -> San Salvador El Salvador -> San Salvador 
El Salvador -> Guatemala City Guatemala -> Belmopan 
Belize -> Mexico City Mexico -> Ottawa Canada -> 
Washington DC United States 
 
Total distance traveled: 28004 
Time taken to execute: 26.049100008094683 ms 

 
Figure 5. TSP Tour with Nearest Neighbour and 2-Opt 

Source: Author’s Document 
 

The results indicate a significant difference in costs, as the 
implementation of the Nearest Neighbour algorithm combined 
with the 2-Opt method yields a considerably lower cost (28,004 
compared to 33,774.6). Furthermore, the resulting route no 
longer exhibits any intersections. The execution time required 
enhance quite significant, recorded at approximately 26.04 
milliseconds. 

IV.   RESULTS AND DISCUSSION 

The application of approximation algorithms such as Nearest 
Neighbour and 2-Opt does not always yield optimal solutions; 
however, they can provide solutions within reasonable bounds. 
In the worst-case scenario, the Nearest Neighbour algorithm, 
when not combined with 2-Opt, may produce a cost that is twice 
that of the optimal solution. When the 2-Opt algorithm is 
incorporated, the cost generated by the Nearest Neighbour 
method can be optimized by eliminating crossing routes.  

The author has conducted an analysis comparing the solutions 
produced by three algorithms: the Traveling Salesman Problem 
(TSP) solved with the Held-Karp method (exact solution), the 
TSP using Nearest Neighbour, and the TSP employing both 
Nearest Neighbour and 2-Opt. This comparison was performed 
for a range of countries from 5 to 21. For instances involving 
more than 21 countries, the Held-Karp algorithm requires 
significant time due to its exponential complexity. 
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Figure 6. TSP Approximation optimality comparison table 

Source: Author’s Document 
 
Based on the conducted tests, it is evident that the TSP 

algorithm utilizing Nearest Neighbour combined with 2-Opt 
yields great results, with an average ratio of the solution 
compared to the exact solution being approximately 
1.0014597531865865. This would mean that the result from the 
aforementioned method has a relatively small deviation from the 
exact solution as expected for an optimal solution. In contrast, 
the TSP algorithm using Nearest Neighbour alone, without the 
2-Opt enhancement, has an average ratio of 
1.0347254478760672.  

The implementation of the Nearest Neighbour algorithm 
entails a time complexity of 𝑂(𝑛ଶ). This complexity arises from 
the need to search for the nearest unvisited city during each 
iteration. For each city (n iterations), the algorithm must 
evaluate the distances to all unvisited cities (up to n-1 
evaluations). Consequently, the overall time complexity is 
𝑂(𝑛²). The route modification using 2-Opt has a time 
complexity of 𝑂(𝑛²) for each improvement attempt, and in the 
worst case, it may require 𝑂(𝑛) improvements. Therefore, the 
actual time complexity for 2-Opt is 𝑂(𝑛³). Thus, the total time 
complexity for constructing an approximate solution to the TSP 
using both Nearest Neighbour and 2-Opt is 𝑂(𝑛²)  +  𝑂(𝑛³)  =

 𝑂(𝑛³), as the higher-order term dominates. 
 

V.   CONCLUSION 

The American continent comprises numerous countries, and 
determining the optimal route to visit all these nations at 
minimal cost presents a challenge that can be addressed through 
the Traveling Salesman Problem (TSP). The TSP can be 
approached through various methods, one of which involves the 
use of approximation algorithms. Employing approximation 
algorithms such as Nearest Neighbour and 2-Opt can 
significantly expedite the solution process, enabling the 
resolution of the TSP for a number of cities reaching into the 
thousands; however, this comes with the trade-off that the 
solutions obtained may not be optimal. 

 
VI.   APPENDIX 

Link Grihub: https://github.com/Farhanabd05/makalah-matdis-
nn 
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