
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

An Approximation of The Traveling Salesman
Problem in Determining The Shortest Route Across

The Continent of America
Abdullah Farhan - 135230421

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1farhanjuneadi213@gmail.com, 13523042@std.stei.itb.ac.id

Abstract— The Traveling Salesman Problem (TSP) is a classical
optimization challenge that seeks to determine the shortest route
visiting each city exactly once before returning to the starting point.
Due to its NP-hard complexity, approximation methods are
necessary for solving the TSP when the number of cities is
substantial. This paper examines the implementation of the Nearest
Neighbor algorithm alongside the 2-Opt optimization technique to
find an approximate solution for the shortest route covering all
countries in the Americas. Testing results indicate that the
combination of Nearest Neighbor and 2-Opt yields more optimal
solutions than employing the Nearest Neighbor algorithm alone.

Keywords— Travelling Salesman Problem, Approximation,
America, Nearest Neighbor, 2-opt, Route Optimization

I. INTRODUCTION

 The American continent is home to numerous beautiful
countries that attract a significant number of tourists. Renowned
for its rich history, diverse cultures, impressive architecture, and
stunning natural landscapes, America offers a wide array of
destinations. From modern cities such as New York, Los
Angeles, and Toronto to natural wonders like the Rocky
Mountains and the Grand Canyon, the continent presents a
plethora of appealing sites for travelers from around the globe.

Figure 1. Map of the Americas

Source: https://id.wikipedia.org/wiki/Daftar_bursa_efek_

di_Benua_Amerika
Geographically, America is a relatively large continent

characterized by varying population densities, comprising
approximately 35 countries distributed across its expanse. Each
country possesses unique characteristics and distinct attractions,
making inter-country travel within America an exceptionally
engaging experience. The available transportation systems,
including domestic and international flight networks as well as
intercity bus services, facilitate ease of movement for tourists
exploring this vast continent.

Traveling across America can be quite costly, particularly for
those wishing to visit all the countries in one journey, which can
lead to significant expenses. Therefore, it is essential to identify
routes that minimize costs. It is assumed that shorter travel
distances will generally result in lower expenses, as airlines
often set prices based on distance.

This paper will explore the shortest travel route for a tour
across the American continent, visiting all 35 countries, utilizing
one of the approximation techniques for the traveling salesman
problem (TSP). Given the complexity of finding the shortest
tour, employing an exact match TSP algorithm is impractical.
The best-known exact match algorithm for solving TSP, Held-
Karp, operates with exponential time complexity, making it
infeasible to solve TSP instances with more than 34 cities within
a reasonable timeframe.

II. THEORITICAL FRAMEWORK

A. Traveling Salesman Problem (TSP)
The Traveling Salesman Problem (TSP) is defined as follows:

"Given a list of cities and the distances between each pair of
cities, find the shortest route that visits each city exactly once
and returns to the origin city." This problem is a classic example
in the fields of combinatorial optimization and graph theory, and
it holds significant relevance in various applications such as
travel planning and circuit design.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 2. Complete Graph

Source: https://i.sstatic.net/VP1OS.png
For instance, the TSP can be illustrated using the graph above,

where the shortest route is determined to be 16, traversing the
nodes in the order of start → 8p → 5p → 2p → 4p → start. TSP
is classified as an NP-hard problem, which currently lacks a
polynomial-time algorithm for its resolution. Consequently,
exact solutions for TSP become impractical in scenarios
involving a large number of cities due to the exceedingly high
computational time required. For example, solving TSP exactly
for 50 cities using the Held-Karp algorithm, which has a time
complexity of 𝑂(𝑛ଶ2), would take approximately 3255334.81
days or 8918.7255 years, This calculation is based on the
following formula:

2ହ ∗ 50ଶ ∗
0.1

(3,156𝑒 + 7) ∗ 1000
= 8918.7255

Assuming:
- Each computation takes 0.1 ms
- One year is equal to 3.156 × 10 seconds

Algorithms designed to tackle TSP can be categorized into
two types: exact algorithms and approximation algorithms.
Exact algorithms yield results that are guaranteed to be minimal
and accurate; examples include branch and bound, dynamic
programming (Held-Karp), and brute force methods. In contrast,
approximation algorithms provide results that are not precise but
offer reasonable approximations, with the advantage of
significantly reduced computational time compared to exact
algorithms. Examples of approximation algorithms include the
Nearest Neighbor and Minimum Spanning Tree methods. In this
paper, the author will employ the Minimum Spanning Tree
approach to address the TSP.

B. Greedy Algorithm

The greedy algorithm is a widely utilized approach for
addressing various optimization problems, wherein decisions
are made locally with the expectation that these choices will lead
to a globally optimal solution. This methodology proves
particularly effective in scenarios where a problem can be
decomposed into a series of smaller decisions, and each decision
can be made independently without requiring knowledge of
future choices. A prominent example of the application of the
greedy algorithm is found in the Traveling Salesman Problem
(TSP). In this problem, a salesman is tasked with visiting a set
number of cities and returning to the starting point while
minimizing the total distance traveled. The Nearest Neighbour
algorithm represents one of the greedy methods employed to
tackle this issue. In this algorithm, the salesman consistently
selects the nearest unvisited city as the next destination,
disregarding potentially more advantageous routes that may

become available later. The key components of the greedy
algorithm include:

a) Candidate Set (C)
This refers to the collection of all potential candidates that can

be selected at each step. In the context of TSP, the candidate set
may consist of nodes (cities) within a graph that represents the
travel routes. In other problems, candidates could include tasks
to be completed, jobs to be performed, coins to be selected,
objects to be picked, or characters to be chosen in a game.

b) Solution Set (S)
This set contains the candidates that have been selected and

are part of the solution being constructed. In the case of TSP, the
solution set will include the sequence of cities visited by the
salesman.

c) Solution Function
This function is employed to ascertain whether the selected

candidate set yields the desired solution. In TSP, this function
will verify if all cities have been visited and whether the
resulting route meets the criteria for the shortest distance.

d) Selection Function
This function is responsible for choosing candidates based on

specific criteria.

C. Hamiltonian Path and Circuit
A Hamiltonian path is a path in a graph that visits each vertex

exactly once without returning to the starting vertex. When this
path returns to the starting vertex, it is referred to as a
Hamiltonian circuit. In the context of the Traveling Salesman
Problem (TSP), the optimal solution is identified as the
Hamiltonian circuit with the minimum total weight.

D. Haversine Formula

The Haversine formula is used to calculate the great-circle
distance between two points on a sphere given their latitudes and
longitudes. It is particularly useful for computing distances
between cities on Earth. The formula is:

𝑑 = 2𝑅 ∗ arcsin (√ [𝑠𝑖𝑛ଶ ቀ
𝜑ଶ − 𝜑₁

2
ቁ +

𝑐𝑜𝑠(𝜑₁) ∗ 𝑐𝑜𝑠(𝜑₂) ∗ 𝑠𝑖𝑛ଶ ൬
𝜆ଶ − 𝜆ଵ

2
൰)]

Where:
- d is the distance between the two points along the

sphere's surface
- R is the radius of the sphere (for Earth, approximately

6,371 kilometers)
- 𝜑₁, 𝜑₂ are the latitudes of point 1 and point 2 in radians
- 𝜆₁, 𝜆₂ are the longitudes of point 1 and point 2 in

radians
This formula accounts for the Earth's spherical shape and

provides more accurate distance calculations compared to the
Euclidean distance when measuring large distances across the
Earth's surface.

E. The 2-Opt Algorithm

The 2-Opt algorithm is a widely recognized method employed
to enhance solutions for the Traveling Salesman Problem (TSP).
This algorithm operates by refining an existing route through a
series of straightforward exchanges known as 2-Opt swaps. The

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

fundamental principle behind this algorithm is to eliminate any
crossings present in the TSP route, thereby resulting in a more
efficient and shorter path.

Figure 3. Algoritma 2-Opt Process

Source:
https://www.researchgate.net/publication/281412705/figure/fig

3/AS:668978481475599@1536508307852/Local-search-2-
opt-and-Or-opt.png

As illustrated in the accompanying figure, the image depicts

a route before and after the application of the 2-Opt algorithm.
Initially, the route is represented as A-B-E-C-D-A, which
contains a crossing. By reversing the sub-route E-C to C-E, a
new, more optimal route is generated: A-B-C-E-D-A. The
operational procedure of the 2-Opt algorithm can be
summarized as follows:

1. Consider a route R and nodes v1 and v2, where the
nodes between 𝑣ଵ and 𝑣ଶ are to be reversed.

2. Extract the segment of the route from the start to 𝑣ଵ and
append it to the new route in the same order.

3. Extract the segment from 𝑣ଵାଵ to 𝑣ଶାଵ and append it
to the new route in reverse order.

4. Finally, extract the segment from 𝑣ଶାଵ back to the start
and append it to the new route in the same order.

F. Nearest Neighbor Algorithm

The Nearest Neighbor algorithm is one of the straightforward
heuristics employed to address the Traveling Salesman Problem
(TSP). This method utilizes a greedy approach, whereby at each
step, the next destination selected is the nearest unvisited city.
The steps of this algorithm are as follows:

1. Begin at a designated starting city.
2. Identify the closest unvisited city.
3. Move to that city.
4. Repeat steps 2 and 3 until all cities have been visited.
5. Return to the initial city.

III. METHOD

The author, as previously indicated in the introduction, seeks
to establish an estimation of the most efficient complete tour
route encompassing all nations within the Americas, using the
capitals of these nations as key reference points. The Americas
are categorized into distinct regions: North America, the
Caribbean, South America, and Central America. In this
framework, the author has assembled a comprehensive list of
each country paired with its capital within the respective regions
of Europe, a portion of which is presented below.

countries = {
 'North America': [
 "Washington DC United States",
 "Ottawa Canada",

 "Mexico City Mexico",
 "Guatemala City Guatemala",
 "San Salvador El Salvador",
 "Tegucigalpa Honduras",
 "Managua Nicaragua",
 "San Jose Costa Rica",
 "Panama City Panama"
],
 'Caribbean': [
 "Havana Cuba",
 "Santo Domingo Dominican Republic",
 "Port-au-Prince Haiti",
 "Kingston Jamaica",
 "Nassau Bahamas",
 "San Juan Puerto Rico",
 "Port of Spain Trinidad and Tobago",
 "Bridgetown Barbados"
],
 'South America': [
 "Brasilia Brazil",

 ...
 ...

Subsequently, the author utilized the Geopy library available
in Python to obtain the coordinates of latitude and longitude.
The acquired latitude and longitude coordinates were then stored
in JSON format.
{
 "North America": {
 "Washington DC United States": {
 "latitude": 38.8950368,
 "longitude": -77.0365427
 },
 "Ottawa Canada": {
 "latitude": 45.4208777,
 "longitude": -75.6901106
 },
 "Mexico City Mexico": {
 "latitude": 19.4326296,
 "longitude": -99.1331785
 },
 "Guatemala City Guatemala": {
 "latitude": 14.6416142,
 "longitude": -90.5132836
 },
 "San Salvador El Salvador": {
 "latitude": 13.6989939,
 "longitude": -89.1914249
 },

 ...
 ...

Upon obtaining the coordinates of each national capital, the
author calculated the geographical distances between one
country and all others using the Haversine formula, which is
employed to determine the distance between two points on a
sphere (in this case, the Earth). The distances between each pair
of countries were recorded in a weighted adjacency matrix. This
weighted adjacency matrix serves as the complete graph
representation for the 35 countries in question. From this
complete graph, the shortest tour was identified using the
Nearest Neighbour algorithm, as outlined in the following
pseudocode:

procedure NearestNeighbor;
var
 path: array [0..n-1] of integer;
 unvisited: array [1..n-1] of integer;
 current: integer;
 nearest: integer;
 i: integer;

begin

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

 path[0] := 0; // Start from city 0
 for i := 1 to n-1 do
 unvisited[i] := i;

 current := 0;
 while unvisited != [] do
 begin
 // Find nearest unvisited city
 nearest := unvisited[1];
 for i := 2 to n-1 do
 if adj_matrix[current, unvisited[i]] <
adj_matrix[current, nearest] then
 nearest := unvisited[i];

 path[length(path)] := nearest;
 delete(unvisited, nearest);
 current := nearest;
 end;

 path[length(path)] := 0; // Complete the cycle
 Result := path;
end;

The Nearest Neighbour algorithm utilizes lists to store the

nodes that have been visited. In its implementation, this
algorithm employs two primary lists: one for maintaining the
current route being formed (path) and another for keeping track
of the nodes that have yet to be visited (unvisited). Each time the
algorithm selects the nearest node, that node is removed from
the unvisited list and added to the path list. This process ensures
that each node is visited only once, facilitating the tracking of
which nodes remain available for selection.

In the context of finding an optimal route across the continent
of America, the algorithm initiates from Washington DC as the
starting city and subsequently selects the nearest unvisited
capital based on distances calculated using the Haversine
formula. Although this greedy approach does not always yield
the optimal solution, it is effective in providing reasonable
solutions with better time complexity compared to exact
algorithms. This is evidenced by implementation results that can
resolve the problem for 35 countries in America in under 1
milliseconds. The selection of the nearest node at each iteration
also aids in minimizing the likelihood of routes deviating
significantly from the optimal solution, although there remains
a possibility of route crossings, which can subsequently be
optimized using the 2-Opt algorithm.

TSP Using NN

Washington DC United States -> Ottawa Canada ->
Nassau Bahamas -> Havana Cuba -> Kingston Jamaica ->
Port-au-Prince Haiti -> Santo Domingo Dominican
Republic -> San Juan Puerto Rico -> Basseterre Saint
Kitts and Nevis -> St. John's Antigua and Barbuda ->
Roseau Dominica -> Castries Saint Lucia -> Kingstown
Saint Vincent and the Grenadines -> St. George's
Grenada -> Port of Spain Trinidad and Tobago ->
Bridgetown Barbados -> Georgetown Guyana ->
Paramaribo Suriname -> Caracas Venezuela -> Bogota
Colombia -> Quito Ecuador -> Panama City Panama ->
Panama City Panama -> San Jose Costa Rica -> San Jose
Costa Rica -> Managua Nicaragua -> Managua Nicaragua
-> Tegucigalpa Honduras -> Tegucigalpa Honduras ->
San Salvador El Salvador -> San Salvador El Salvador
-> Guatemala City Guatemala -> Belmopan Belize ->
Mexico City Mexico -> Lima Peru -> La Paz Bolivia ->
Asuncion Paraguay -> Buenos Aires Argentina ->
Montevideo Uruguay -> Santiago Chile -> Brasilia
Brazil -> Washington DC United States

Total distance traveled: 33774.61743080288
Time taken to execute: 0.2088000183 ms

Figure 4. TSP Tour with Nearest Neighbour

Source: Author's Document

The approximation route for the Traveling Salesman Problem

(TSP) indicates a total distance of 33.774.6 kilometers required
to visit all 35 countries in the Americas and return to the starting
point. However, it is evident that this route contains several
suboptimal paths and intersections, such as the segment
connecting the USA to Brazil and the one from Canada to the
Bahamas, among others. There remains potential for further
optimization of this route to eliminate all crossings by
employing the 2-Opt crossover algorithm. The pseudocode for
generating a new route using the 2-Opt algorithm is as follows:

function TwoOptSwap(tour: array of integer; i, j:
integer): array of integer;
var
 new_tour: array of integer;

begin
 new_tour := Copy(tour, 1, i-1) +
 Reverse(Copy(tour, i, j-i+1)) +
 Copy(tour, j+1, Length(tour)-j);
 Result := new_tour;
end;

function ImproveTour2Opt(tour: array of integer;
tour_cost: integer): array of integer;
var
 best_tour: array of integer;
 best_cost: integer;
 improved: boolean;
 i, j: integer;
 new_tour: array of integer;
 new_cost: integer;

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

begin
 best_tour := tour;
 best_cost := tour_cost;
 improved := False;

 while True do
 begin
 for i := 1 to Length(tour)-3 do
 begin
 for j := i+2 to Length(tour) do
 begin
 new_tour := TwoOptSwap(tour, i, j);
 new_cost := CalculateTspCost(new_tour);

 if new_cost < best_cost then
 begin
 best_tour := new_tour;
 best_cost := new_cost;
 improved := True;
 Break;
 end;
 end;

 if improved then
 Break;
 end;

 if not improved then
 Break;

 tour := best_tour;
 tour_cost := best_cost;
 end;

 Result := best_tour;
end;

 After changing the tour with Nearest Neighbor by adding the
2-Opt algorithm, the tour results are as follows:

TSP Using NN and 2-Opt

Washington DC United States -> Nassau Bahamas ->
Havana Cuba -> Kingston Jamaica -> Port-au-Prince
Haiti -> Santo Domingo Dominican Republic -> San Juan
Puerto Rico -> Basseterre Saint Kitts and Nevis ->
St. John's Antigua and Barbuda -> Roseau Dominica ->
Castries Saint Lucia -> Bridgetown Barbados ->
Kingstown Saint Vincent and the Grenadines -> St.
George's Grenada -> Caracas Venezuela -> Bogota
Colombia -> Port of Spain Trinidad and Tobago ->
Georgetown Guyana -> Paramaribo Suriname -> Brasilia
Brazil -> Asuncion Paraguay -> Montevideo Uruguay ->
Buenos Aires Argentina -> Santiago Chile -> La Paz
Bolivia -> Lima Peru -> Quito Ecuador -> Panama City
Panama -> Panama City Panama -> San Jose Costa Rica -
> San Jose Costa Rica -> Managua Nicaragua -> Managua
Nicaragua -> Tegucigalpa Honduras -> Tegucigalpa
Honduras -> San Salvador El Salvador -> San Salvador
El Salvador -> Guatemala City Guatemala -> Belmopan
Belize -> Mexico City Mexico -> Ottawa Canada ->
Washington DC United States

Total distance traveled: 28004
Time taken to execute: 26.049100008094683 ms

Figure 5. TSP Tour with Nearest Neighbour and 2-Opt

Source: Author’s Document

The results indicate a significant difference in costs, as the
implementation of the Nearest Neighbour algorithm combined
with the 2-Opt method yields a considerably lower cost (28,004
compared to 33,774.6). Furthermore, the resulting route no
longer exhibits any intersections. The execution time required
enhance quite significant, recorded at approximately 26.04
milliseconds.

IV. RESULTS AND DISCUSSION

The application of approximation algorithms such as Nearest
Neighbour and 2-Opt does not always yield optimal solutions;
however, they can provide solutions within reasonable bounds.
In the worst-case scenario, the Nearest Neighbour algorithm,
when not combined with 2-Opt, may produce a cost that is twice
that of the optimal solution. When the 2-Opt algorithm is
incorporated, the cost generated by the Nearest Neighbour
method can be optimized by eliminating crossing routes.

The author has conducted an analysis comparing the solutions
produced by three algorithms: the Traveling Salesman Problem
(TSP) solved with the Held-Karp method (exact solution), the
TSP using Nearest Neighbour, and the TSP employing both
Nearest Neighbour and 2-Opt. This comparison was performed
for a range of countries from 5 to 21. For instances involving
more than 21 countries, the Held-Karp algorithm requires
significant time due to its exponential complexity.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 6. TSP Approximation optimality comparison table

Source: Author’s Document

Based on the conducted tests, it is evident that the TSP

algorithm utilizing Nearest Neighbour combined with 2-Opt
yields great results, with an average ratio of the solution
compared to the exact solution being approximately
1.0014597531865865. This would mean that the result from the
aforementioned method has a relatively small deviation from the
exact solution as expected for an optimal solution. In contrast,
the TSP algorithm using Nearest Neighbour alone, without the
2-Opt enhancement, has an average ratio of
1.0347254478760672.

The implementation of the Nearest Neighbour algorithm
entails a time complexity of 𝑂(𝑛ଶ). This complexity arises from
the need to search for the nearest unvisited city during each
iteration. For each city (n iterations), the algorithm must
evaluate the distances to all unvisited cities (up to n-1
evaluations). Consequently, the overall time complexity is
𝑂(𝑛²). The route modification using 2-Opt has a time
complexity of 𝑂(𝑛²) for each improvement attempt, and in the
worst case, it may require 𝑂(𝑛) improvements. Therefore, the
actual time complexity for 2-Opt is 𝑂(𝑛³). Thus, the total time
complexity for constructing an approximate solution to the TSP
using both Nearest Neighbour and 2-Opt is 𝑂(𝑛²) + 𝑂(𝑛³) =

 𝑂(𝑛³), as the higher-order term dominates.

V. CONCLUSION

The American continent comprises numerous countries, and
determining the optimal route to visit all these nations at
minimal cost presents a challenge that can be addressed through
the Traveling Salesman Problem (TSP). The TSP can be
approached through various methods, one of which involves the
use of approximation algorithms. Employing approximation
algorithms such as Nearest Neighbour and 2-Opt can
significantly expedite the solution process, enabling the
resolution of the TSP for a number of cities reaching into the
thousands; however, this comes with the trade-off that the
solutions obtained may not be optimal.

VI. APPENDIX

Link Grihub: https://github.com/Farhanabd05/makalah-matdis-
nn

VII. ACKNOWLEDGMENT

I express my profound gratitude to the Almighty God for all
the blessings and grace that have enabled me to successfully
complete this paper. I would also like to extend my heartfelt
thanks to:

1. Mr. Ir. Rila Mandala, M.Eng., Ph.D., my instructor for
the Discrete Mathematics course, for his invaluable
guidance;

2. Mr. Dr. Ir. Rinaldi Munir, M.T., for his website, which
greatly facilitated the information-gathering process
related to the topic discussed in this paper;

3. My friends and family for their unwavering support.

REFERENCES

[1] Munir, Rinaldi. 2023. Greedy (Bag. 1): Bahan Kuliah Strategi Algoritma.
Accessed 6 January 2025

[2] GeeksforGeeks, "Traveling Salesman Problem,". Avalaible:
https://www.geeksforgeeks.org/travelling-salesman-problem-using-
dynamic-programming/ . Accessed 1 January 2025

[3] Jazib, M. (2023, June 22). List of countries in Americas: Geographic
locations, full list, Important facts. Jagranjosh.com.
https://www.jagranjosh.com/general-knowledge/list-of-countries-in-
americas-1687427717-1. Accessed 6 January 2025

[4] Some important heuristics for the TSP” https://ocw.mit.edu/courses/1
203j-logistical-and-transportation-planning-methods-fall
2006/03634d989704c2607e6f48a182d455a0_lec16.pdf, Accessed 1
January 2025

[5] Munir, Ranldi. 2024. Graf (Bag. 1): Bahan Kuliah Matematika Diskrit.
Accessed 6 January 2025

STATEMENT

Hereby, I declare that this paper I have written is my own
work, not a reproduction or translation of someone else’s

paper, and not plagiarized.

Bandung, 26 Desember 2024

Abdullah Farhan 13523042

